Скелетная мышца как орган. Мышечная система


Мышцы человека по отношению к его общей массе составляют примерно 40%. Основной их функцией в организме является обеспечение движения за счет способности сокращаться и расслабляться. Впервые строение мышц (8 класс) начинает изучаться в школе. Там знания даются на общем уровне, без особого углубления. Статья будет интересна тем, кто желает немного выйти за эти рамки.

Строение мышц: общие сведения

Мышечная ткань представляет собой группу, объединяющую поперечно-полосатую, гладкую и сердечную разновидности. Различающиеся по происхождению и строению, они объединены по признаку выполняемой функции, то есть способности сокращаться и удлиняться. Кроме перечисленных разновидностей, которые формируются из мезенхимы (мезодермы), в человеческом организме есть еще и мышечная ткань, имеющая эктодермальное происхождение. Это миоциты радужки глаз.

Структурное, общее строение мышц таково: они состоят из активной части, называемой брюшком, и сухожильных концов (сухожилия). Последние образованы из плотной соединительной ткани и выполняют функцию прикрепления. Они отличаются характерным беловато-желтым цветом и блеском. К тому же, обладают значительной крепостью. Обычно своими сухожилиями мышцы прикрепляются к звеньям скелета, соединение с которыми подвижно. Однако некоторые могут крепиться и к фасциям, к различным органам (глазное яблоко, хрящ гортани и т.д.), к коже (на лице). Кровоснабжение мышц различается и зависит от испытываемых ими нагрузок.

Регулирование работы мышц

Контроль над их работой осуществляется, как и у других органов, нервной системой. Рецепторами или эффекторами оканчиваются ее волокна в мышцах. Первые располагаются также и в сухожилиях, имеют вид концевых разветвлений чувствительного нерва или нервно-мышечного веретена, обладающего сложным устройством. Они реагируют на степень сокращения и растяжения, вследствие чего у человека появляется определенное чувство, которое, в частности, помогает определить положение тела в пространстве. Эффекторные нервные окончания (второе название - моторные бляшки) принадлежат двигательному нерву.

Строение мышц характеризуется также наличием в них окончаний волокон симпатической нервной системы (вегетативной).

Строение поперечно-полосатой мышечной ткани

Ее часто называют скелетной или исчерченной. Строение скелетной мышцы достаточно непростое. Она образована волокнами, имеющими цилиндрическую форму, длиной от 1 мм до 4 см и более, толщиной 0,1 мм. Причем каждое представляет собой особый комплекс, состоящий из миосателлитоцитов и миосимпласта, покрытых плазматической мембраной, называемой сарколеммой. Снаружи к ней прилегает базальная мембрана (пластинка), образованная из тончайших коллагеновых и ретикулярных волокон. Миосимпласт состоит из большого количества ядер эллипсоидной формы, миофибрилл и цитоплазмы.

Строение мышц данного типа отличается хорошо развитой саркотубулярной сетью, образованной из двух компонентов: канальцев ЭПС и Т-трубочек. Последние играют важную роль в ускорении проведения потенциала действия к микрофибриллам. Миосателлитоциты находятся непосредственно над сарколеммой. Клетки имеют уплощенную форму и крупное ядро, богатое хроматином, а также центросому и небольшое число органелл, миофибриллы отсутствуют.

Саркоплазма скелетной мышцы богата особым белком - миоглобином, который, как и гемоглобин, имеет способность связываться с кислородом. В зависимости от его содержания, наличия/отсутствия миофибрилл и толщины волокон различают два вида поперечно-полосатых мышц. Специфическое строение скелета, мышцы - все это элементы приспособления человека к прямохождению, их главные функции - опора и движение.

Красные мышечные волокна

Они обладают темным цветом, богаты миоглобином, саркоплазмой и митохондриями. Однако содержат мало миофибрилл. Эти волокна сокращаются достаточно медленно и могут долго пребывать в таком состоянии (иначе говоря, в рабочем). Строение скелетной мышцы и выполняемые ею функции стоит рассматривать как части единого целого, взаимно обуславливающие друг друга.

Белые мышечные волокна

Они отличаются светлым цветом, содержат гораздо меньшее количество саркоплазмы, митохондрий и миоглобина, но зато характеризуются высоким содержанием миофибрилл. Это обуславливает то, что они сокращаются гораздо интенсивнее, чем красные, но и «устают» тоже быстро.

Строение мышц человека отличается тем, что в организме имеется и тот, и другой вид. Такая совокупность волокон обуславливает быстроту реакции мышц (сокращение) и их продолжительную работоспособность.

Гладкая мышечная ткань (неисчерченная): строение

Она построена из миоцитов, дислоцирующихся в стенках лимфатических, кровеносных сосудов и образующих сократительный аппарат во внутренних полых органах. Это удлиненные клетки, имеющие веретенообразную форму, без поперечной исчерченности. Их расположение - групповое. Каждый миоцит окружает базальная мембрана, коллагеновые и ретикулярные волокна, среди которых находятся эластические. Между собой клетки связывают многочисленные нексусы. Особенности строения мышц данной группы заключаются в том, что к каждому миоциту, окруженному соединительной тканью, подходит одно нервное волокно (например, сфинктер зрачка), а импульс транспортируется от одной клетки к другой с помощью нексусов. Скорость его движения - 8-10 см/с.

У гладких миоцитов скорость сокращения гораздо меньше, чем у миоцитов исчерченной мышечной ткани. Зато и энергия расходуется экономно. Такое строение позволяет им совершать длительные сокращения тонического характера (например, сфинктеры кровеносных сосудов, полых, трубчатых органов) и достаточно медленные движения, которые зачастую бывают ритмичны.

Сердечная мышечная ткань: особенности

По классификации она принадлежит к поперечно-полосатой, но строение и функции мышц сердца заметно отличаются от скелетных. Сердечная мышечная ткань состоит из кардиомиоцитов, которые образуют комплексы, соединяясь друг с другом. Сокращение сердечной мышцы не подвластно контролю со стороны сознания человека. Кардиомиоциты представляют собой клетки, имеющие неправильную цилиндрическую форму, с 1-2 ядрами, большим количеством крупных митохондрий. Между собой они соединены вставочными дисками. Это особая зона, которая включает цитолемму, области прикрепления миофибрилл к ней, десмосы, нексусы (через них происходит передача нервного возбуждения и ионный обмен между клетками).

Классификация мышц в зависимости от формы и величины

1. Длинные и короткие. Первые встречаются там, где наиболее большой размах при движении. Например, верхние и нижние конечности. А короткие мышцы, в частности, расположены между отдельными позвонками.

2. Широкие мышцы (на фото - желудок). Они в основном располагаются на туловище, в полостных стенках тела. Например, поверхностные мышцы спины, груди, живота. При многослойном расположении их волокна, как правило, идут в разных направлениях. Поэтому они обеспечивают не только большое многообразие движений, но и укрепляют стенки полостей тела. У широких мышц сухожилия имеют плоскую форму и занимают большую поверхность, их называют растяжениями или апоневрозами.

3. Круговые мышцы. Они находятся вокруг отверстий тела и своими сокращениями суживают их, в результате чего получили название «сфинктеры». Например, круговая мышца рта.

Сложные мышцы: особенности строения

Их названия соответствуют их структуре: двух-, трех- (на фото) и четырехглавые. Строение мышц данного вида отличается тем, что их начало бывает не единым, а разделенным на 2, 3 или 4 части (головки) соответственно. Начинаясь от разных точек кости, они затем сдвигаются и объединяются в общее брюшко. Оно тоже может быть поделено промежуточным сухожилием поперек. Такая мышца называется двубрюшной. Направление волокон может быть параллельным оси либо находиться к ней под острым углом. В первом случае, наиболее распространенном, мышца достаточно сильно укорачивается при сокращении, обеспечивая тем самым большой размах при движениях. А во втором - волокна короткие, расположены под углом, но их гораздо больше по количеству. Поэтому мышца укорачивается незначительно при сокращении. Ее главное преимущество заключается в том, что она развивает при этом большую силу. В случае если волокна подходят к сухожилию только с одной стороны, мышца имеет название одноперистой, если с двух - двуперистой.

Вспомогательные аппараты мышц

Строение мышц человека уникально и имеет свои особенности. Так, например, под влиянием их работы из окружающей соединительной ткани образуются вспомогательные аппараты. Всего их четыре.

1. Фасции, которые есть не что иное, как оболочки из плотной, волокнистой фиброзной ткани (соединительной). Они покрывают как одиночные мышцы, так и целые группы, а также некоторые другие органы. К примеру, почки, сосудисто-нервные пучки и т.д. Они влияют на направление тяги во время сокращения и не допускают смещения мышц в стороны. Плотность и прочность фасций зависит от их расположения (в различных частях тела они отличаются).

2. Синовиальные сумки (на фото). Об их роли и строении многие, пожалуй, помнят еще со школьных уроков (Биология, 8 класс: "Строение мышц"). Они представляют собой своеобразные мешки, стенки которых образованы соединительной тканью и достаточно тонкие. Внутри заполнены жидкостью типа синовии. Как правило, образуются они там, где сухожилия соприкасаются между собой либо испытывают большое трение о кость при сокращении мышцы, а также в местах трения об нее кожного покрова (например, локти). Благодаря синовиальной жидкости улучшается и облегчается скольжение. Развиваются они в основном после рождения, и с годами полость увеличивается.

3. Синовиальные влагалища. Их развитие происходит внутри костно-фиброзных или фиброзных каналов, которыми сухожилия длинных мышц окружены в местах скольжения по кости. В строении синовиального влагалища различают два лепестка: внутренний, покрывающий со всех сторон сухожилие, и наружный, выстилающий стенки фиброзного канала. Они препятствуют трению сухожилий о кость.

4. Сесамовидные кости. Как правило, они окостеневают внутри связок или сухожилий, укрепляя их. Это облегчает работу мышцы за счет увеличения плеча приложения силы.

Невозможно обойтись хотя бы без поверхностных знаний о том, как устроены мышцы, и о физиологических процессах, когда речь заходит о таких ключевых вещах в тренировках как: интенсивность, рост мышц, увеличение силы и скорости, правильное питание, грамотное снижение веса, аэробные нагрузки. Трудно объяснить человеку, ничего не знающему о строении и функционировании тела, почему некоторые культуристы обладают смехотворной выносливостью, почему марафонцы не могут иметь большой мышечной массы и силы, почему нельзя убрать жир только в области талии, почему нельзя накачать огромные руки, не тренируя всё тело, почему так важны белки для увеличения мышечной массы и много-много других тем.

Любые физические упражнения всегда имеют отношение к мышцам. Рассмотрим мышцы поближе.

Мышцы человека

Мышца — это сократительный орган, состоящий из особых пучков мышечных клеток, который обеспечивает движения костей скелета, частей тела, веществ в полостях тела. А также фиксацию определённых частей тела относительно других частей.

Обычно под словом «мышцы» понимают бицепс, квадрицепс или трицепс. Современная биология описывает три разновидности мышц тела человека.

Скелетные мышцы

Это как раз и есть мышцы, о которых мы думаем, произнося слово «мышцы». Прикреплённые сухожилиями к костям, эти мышцы обеспечивают движение тела и поддержание определённой позы. Эти мышцы ещё называют поперечно-полосатыми, поскольку при разглядывании в микроскоп бросается в глаза их поперечная исчерченность. Далее будет дано более детальное объяснение этой исчерченности. Скелетные мышцы управляются нами произвольно, то есть по команде нашего сознания. На фотографии Вы можете видеть отдельные мышечные клетки (волокна).

Гладкие мышцы

Этот тип мышц содержится в стенках внутренних органов, таких как пищевод, желудок, кишечник, бронхи, матка, уретра, мочевой пузырь, кровеносные сосуды и даже кожа (в которой они обеспечивают движение волос и общий тонус). В отличие от скелетных мышц, гладкие мышцы не находятся под контролем нашего сознания. Они управляются вегетативной нервной системой (бессознательной частью нервной системы человека). Строение и физиология гладких мышц отличается от таковой у скелетных мышц. В данной статье мы не будем касаться этих вопросов.

Сердечная мышца (миокард)

Эта мышца обеспечивает работу нашего сердца. Она также не контролируется нашим сознанием. Однако, эта разновидность мышц очень похожа на скелетные мышцы по своим свойствам. Кроме этого, сердечная мышца имеет специальный участок (сино-атриальный узел), называемый ещё пейсмейкером (водитель ритма). Этот участок обладает свойством вырабатывать ритмичные электрические импульсы, обеспечивающие чёткую периодичность сокращения миокарда.

В этой статье я буду говорить только о первой разновидности мышц – скелетных. Но Вам всегда стоит помнить, что существуют и две другие разновидности.

Мышцы в общем

У человека насчитывают около 600 скелетных мышц. У женщин масса мышц может достигать 32% от массы тела. У мужчин даже 45% от массы тела. И это прямое следствие гормональных различий полов. Полагаю, у культуристов это значение ещё больше, поскольку они целенаправленно наращивают именно мышечную ткань. После 40 лет, если не тренироваться, мышечная масса в теле начинает постепенно снижаться примерно на 0,5-1% в год. Поэтому физические упражнения с возрастом становятся просто необходимы, если конечно Вы не желаете превратиться в развалину.

Отдельная мышца состоит из активной части – брюшка, и пассивной части – сухожилий, которыми крепится к костям (с двух сторон). Различные разновидности мышц (по форме, по креплению, по функциям) будут рассмотрены в отдельной статье, посвящённой классификации мышц. Брюшко состоит из множества пучков мышечных клеток. Пучки разделены между собой прослойкой соединительной ткани.

Мышечные волокна

Мышечные клетки (волокна) имеют очень вытянутую форму (словно нити) и бывают двух типов: быстрые (белые) и медленные (красные). Часто встречаются данные и о третьем промежуточном типе мышечных волокон. Обсудим более детально типы мышечных волокон в отдельной статье, а здесь ограничимся лишь общими сведениями. В некоторых крупных мышцах длина мышечных волокон может достигать десятка сантиметров (например, в квадрицепсе).

Медленные мышечные волокна

Эти волокна не способны к быстрым и мощным сокращениям, но зато способны сокращаться долго (часами) и связаны с выносливостью. Волокна этого типа имеют много митохондрий (органоиды клетки, в которых происходят главные энергетические процессы), значительный запас кислорода в соединении с миоглобином. Преобладающим энергетическим процессом в этих волокнах является аэробное окисление питательных веществ. Клетки этого типа опутаны густой сетью капилляров. Хорошие марафонцы, как правило, имеют в своих мышцах больше волокон именно этого типа. Отчасти это имеет генетические причины, а отчасти объясняется особенностями тренировок. Известно, что при специальных тренировках на выносливость в течение длительного времени в мышцах начинает преобладать именно такая (медленная) разновидность волокон.

В статье я рассказал об энергетических процессах, происходящих в мышечных волокнах.

Быстрые мышечные волокна

Эти волокна способны к очень мощным и быстрым сокращениям, однако, они не могут сокращаться продолжительное время. Этот тип волокон имеет меньшее количество митохондрий. Быстрые волокна опутаны меньшим количеством капилляров по сравнению с медленными волокнами. Большинство тяжелоатлетов и спринтеров, как правило, имеют больше белых мышечных волокон. И это вполне закономерно. При специальных тренировках силовой и скоростной направленности в мышцах возрастает процент белых мышечных волокон.

Когда говорят о приёме таких препаратов спортивного питания, как , речь идёт как раз о развитии белых мышечных волокон.

Мышечные волокна тянутся от одного сухожилия до другого, поэтому зачастую длина их равна длине мышцы. В месте соединения с сухожилием оболочки мышечных волокон прочно связываются с коллагеновыми волокнами сухожилия.

Каждая мышца обильно снабжена капиллярами и нервными окончаниями, идущими от мотонейронов (нервных клеток, отвечающих за движение). Причём, чем тоньше работа, совершаемая мышцей, тем меньшее количество мышечных клеток приходится на один мотонейрон. Например, в мышцах глаза на одно нервное волокно мотонейрона приходится 3-6 мышечных клеток. А в трёхглавой мышце голени (икроножная и камбаловидная) на одно нервное волокно приходится 120-160 и даже более мышечных клеток. Отросток мотонейрона соединяется с каждой отдельной клеткой тонкими нервными окончаниями, образуя синапсы. Мышечные клетки, иннервируемые одним мотонейроном, называются двигательной единицей. По сигналу мотонейрона они сокращаются одновременно.

По капиллярам, опутывающим каждую мышечную клетку поступает кислород и другие вещества. Через капилляры же в кровь выводится молочная кислота, когда она образуется в избытке при интенсивных нагрузках, а также углекислый газ, продукты метаболизма. В норме у человека на 1 кубический миллиметр мышц приходится около 2000 капилляров.

Усилие, развиваемое одной мышечной клеткой, может достигать 200 мг. То есть при сокращении одна мышечная клетка может поднять вес в 200 мг. При сокращении мышечная клетка способна укоротиться более, чем в 2 раза, увеличиваясь в толщину. Поэтому мы имеем возможность демонстрировать свои мышцы, например, бицепс, сгибая руку. Он, как известно, приобретает форму шара, увеличиваясь в толщину.

Посмотрите на рисунок. Здесь хорошо видно, как именно расположены в мышцах мышечные волокна. Мышца в целом находится в соединительнотканной оболочке, называемой эпимизием. Пучки мышечных клеток также разделены между собой слоями соединительной ткани, в которых проходят многочисленные капилляры и нервные окончания.

Кстати говоря, мышечные клетки, принадлежащие одной двигательной единице могут лежать в разных пучках.

В цитоплазме мышечной клетки присутствует гликоген (в виде гранул). Интересно, что мышечного гликогена в организме может быть даже больше, чем гликогена в печени в силу того, что мышц в организме много. Однако, мышечный гликоген может быть использован только локально, в данной мышечной клетке. А гликоген печени используется всем организмом, в том числе и мышцами. О гликогене мы ещё поговорим отдельно.

Миофибриллы — это мышцы мышц

Обратите внимание, мышечная клетка буквально набита сократительными жгутами, которые называются миофибриллами. По сути дела — это мышцы мышечных клеток. Миофибриллы занимают до 80% всего внутреннего объёма мышечной клетки. Белый слой, опутывающий каждую миофибриллу – это ни что иное, как саркоплазматический ретикулум (или, по-другому, эндоплазматическая сеть). Этот органоид густой ажурной сеточкой опутывает каждую миофибриллу и имеет очень важное значение в механизме сокращения и расслабления мышцы (перекачка ионов Ca).

Как Вы можете видеть, миофибриллы состоят из коротких цилиндрических участков, называемых саркомерами. В одной миофибрилле обычно несколько сотен саркомеров. Длина каждого саркомера около 2,5 микрометров. Саркомеры отделены друг от друга тёмными поперечными перегородками (см. фото). Каждый саркомер состоит из тончайших сократительных нитей двух белков: актина и миозина. Строго говоря, в акте сокращения участвует четыре белка: актин, миозин, тропонин и тропомиозин. Но поговорим об этом в отдельной статье о сокращении мышц.

Миозин это толстая белковая нить, огромная длинная молекула белка, одновременно являющаяся и ферментом, расщепляющим АТФ. Актин – это более тонкая белковая нить, представляющая собой также длинную молекулу белка. Процесс сокращения происходит благодаря энергии АТФ. При сокращении мышцы, толстые нити миозина связываются с тонкими нитями актина, образуя молекулярные мостики. Благодаря этим мостикам, толстые нити миозина подтягивают нити актина, что приводит к укорочению саркомера. Само по себе сокращение одного саркомера незначительно, но поскольку саркомеров очень много в составе одной миофибриллы, сокращение получается весьма заметным. Важным условием сокращения миофибрилл является наличие ионов кальция.

Тонкое устройство саркомера объясняет поперечную исчерченность мышечных клеток. Дело в том, что сократительные белки имеют разные физико-химические свойства и по-разному проводят свет. Поэтому одни участки саркомера выглядят темнее других. А если учесть, что саркомеры соседних миофибрилл лежат в точности друг напротив друга, то отсюда и поперечная исчерченность всей мышечной клетки.

Мы более детально рассмотрим строение и работу саркомеров в отдельной статье о сокращении мышц.

Сухожилие

Это очень плотное и нерастяжимое образование, состоящее из соединительной ткани и волокон коллагена, служащее для крепления мышцы к костям. О прочности сухожилий говорит тот факт, что требуется усилие в 600 кг, чтобы разорвать сухожилие четырёхглавой мышцы бедра, и в 400 кг, чтобы разорвать сухожилие трёхглавой мышцы голени. С другой стороны, если говорить о мышцах, это не такие уж и большие цифры. Ведь мышцы развивают усилия в сотни килограммов. Однако система рычагов тела снижает это усилие, чтобы получить выигрыш в скорости и амплитуде движения. Но об этом в отдельной статье по биомеханике тела.

Регулярные силовые тренировки приводят к укреплению сухожилий и костей в местах крепления мышц. Таким образом, сухожилия тренированного атлета могут выдерживать и более серьёзные нагрузки без разрыва.

Соединение сухожилия с костью не имеет чёткой границы, поскольку клетки ткани сухожилия вырабатывают и вещество сухожилия, и вещество кости.

Соединение сухожилия с мышечными клетками происходит за счёт сложного соединения и взаимного проникновения микроскопических волокон.

Между клетками и волокнами сухожилий вблизи мышц лежат специальные микроскопические органы Гольджи. Их предназначение — определение степени растяжения мышцы. По сути, органы Гольджи — это рецепторы, оберегающие наши мышцы от чрезмерного растяжения и напряжения.

Скелетные мышцы состоят из отдельных клеток или мышечных волокон, имеющих поперечную исчерченность. В мышечном волокне содержится неспециализированная цитоплазма - саркоплазма и специализированная - киноплазма. У позвоночных саркоплазма, содержащая ядра, располагается на периферии мышечной клетки непосредственно под ее оболочкой - сарколеммой. Киноплазма состоит из белковых фибрилл - миофибрилл. Миофибриллы делятся на толстые, в основном состоящие из белка миозина, и тонкие, состоящие из белков актина и тропомиозина. Благодаря параллельному расположению миофибрилл под микроскопом видна продольная исчерченность мышечного волокна. Поперечная исчерченность зависит от правильного чередования в миофибриллах, расположенных на одном уровне поперечных дисков, которые различно преломляют свет. Анизотропные диски (А) при рассматривании в поляризованном свете характеризуются сильным положительным одноосным двойным лучепреломлением. В обычном свете они темные и имеют приблизительно ту же высоту, что и светлые диски. В поляризованном свете изотропные, светлые диски (I) имеют слабое и трудно обнаруживаемое двойное преломление. Когда мышцы расслаблены, видны тонкие полоски, делящие анизотропные и изотропные диски на равные части. Эти полоски называются инофрагмами .

В светлых дисках они темные, хорошо видны и называются телофрагмами (Т), а в темных дисках они светлые, бывают не всегда, плохо различимы и называются мезофрагмами (М). Инофрагмы непосредственно связаны с сарколеммой и пересекают ее. Участок между двумя Т называется саркомером. В концах мышечных клеток поперечная исчерченность исчезает. Сарколемма связана с сухожилием и переходит в соединительную ткань, расположенную между пучками мышечных волокон. У человека длина мышечных волокон 4-12 см (в среднем 4-8 см), толщина их — 10-100 мкм.

У низших позвоночных имеются следующие группы поперечнополосатых мышечных волокон: тонические, фазные, или тетанические, и переходные, или промежуточные. Тонические реагируют на раздражение местным возбуждением и напряжением, волна возбуждения в них не распространяется. Фазные - отвечают на раздражение распространяющейся волной возбуждения, сокращением и расслаблением. В тонических сокращениях участвуют и фазные волокна. Тонические волокна отличаются от фазных строением и иннервацией. Они иннервируются более тонкими мякотными нервными волокнами, чем фазные, и отличаются меньшей возбудимостью (в 3-6 раз) и меньшей скоростью проведения импульсов возбуждения (в 2-15 раз). Двигательные нейроны тонических волокон расположены в боковых рогах спинного мозга, а фазных - в передних рогах.

Мышечные волокна отличаются друг от друга количеством саркоплазмы, содержащей . - миоглобин. Различают тонкие красные мышечные волокна, в которых обычно имеется большой запас питательных веществ (гликогена и липидов), и толстые светлые или белые волокна, густо и равномерно заполненные миофибриллами. Красные мышечные волокна значительно более вязки, чем белые. Они медленнее возбуждаются и сокращаются, сила сокращения у них значительно больше, чем у белых волокон, они способны к более длительной работе, т. е. меньше утомляются.

Группы красных мышечных волокон богаче снабжаются , в них больше артериол и капилляров, капилляры шире и, следовательно, в них больше гемоглобина, а также миоглобина. В красных волокнах больше митохондрий, выше активность ферментов; гликоген расщепляется незначительно, но очень высок обмен липидов и уровень окислительных процессов. В белых волокнах используется расщепления гликогена без кислорода (гликолиз); низок уровень окислительных процессов и расщепления липидов, меньше миоглобина. Миоглобин соединяется с кислородом. Этот запас кислорода обеспечивает способность к длительной мышечной деятельности.

У людей и многих животных скелетные мышцы состоят из красных и белых мышечных волокон, которые перемежаются друг с другом. У высших позвоночных (млекопитающих, птиц) белые мышечные волокна преобладают в быстро сокращающихся мышцах, участвующих в фазных движениях, перемещающих организм в пространстве, а красные - в медленно сокращающихся мышцах, поддерживающих положение тела в пространстве. Белые мышечные волокна находятся преимущественно в сгибателях и многих поверхностно расположенных разгибателях, а красные - в глубоких частях сгибателей, например, передней большеберцовой мышцы, и в более глубоко расположенных разгибателях - в камбаловидной мышце. Разделение на белые и красные мышцы имеется у некоторых домашних животных (кроликов, кур). У людей такой разницы в окраске мышечных волокон, как у животных, нет, и мышцы различаются преимущественно по быстроте или медленности движений.

В медленных мышечных волокнах возникает возбуждение позднее, в несколько раз больше время достижения максимального сокращения и значительно меньше скорость проведения возбуждения. Эти различия обусловлены тем, что в медленных мышцах содержатся тонические мышечные волокна и медленные фазные волокна, но у млекопитающих тонических волокон мало и значительно преобладают медленные фазные.

Регенерация скелетных мышц у человека и животных зависит от возраста, видовых особенностей и внешних условий. После отмирания мышечных волокон остаются оболочки из сарколеммы, в которые врастают тяжи цитоплазмы - миосимпласты с наибольшей скоростью регенерации 1-1,5 мм в сутки. Существуют три основных типа строения скелетных мышц, отличающихся расположением мышечных волокон.

1. Параллельные (плоские) мышцы, состоящие из прямых, параллельных друг другу пучков мышечных волокон. Например, портняжная мышца, подкожная мышца шеи.

2. Веретенообразные мышцы, состоящие из пучков мышечных волокон, веерообразно сходящихся к сухожилиям, например двуглавая мышца плеча.

3. Перистые, в которых пучки мышечных волокон прикрепляются с двух сторон к сухожилию, заложенному в середине брюшка мышцы, и полуперистые, в которых пучки мышечных волокон прикрепляются с двух сторон к сухожилию, заложенному сбоку от брюшка мышцы. Большинство мышц у млекопитающих и человека имеют веретенообразное и перистое строение. Скорость сокращения наибольшая у перистых и наименьшая у параллельных мышц.

Мышца как орган

В организме человека выделяют 3 вида мышечной ткани:

Скелетная

Поперечнополосатая

Поперечнополосатая скелетная мышечная ткань образована цилиндрической формы мышечными волокнами длиной от 1 до 40 мм и толщиной до 0.1 мкм, каждое из которых представляет собой комплекс, состоящий из миосимпласта и миосателито, покрытых общей базальной мембраной, укрепленной тонкими коллагеновыми и ретикулярными волокнами. Базальная мембрана формирует сарколемму. Под плазмолеммой миосимпласта располагается множество ядер.

В саркоплазме находятся цилиндрические миофибриллы. Между миофибриллами залегают многочисленные митохондрии с развитыми кристами и частичками гликогена. Саркоплазма богата белков миоглобином, который подобно гемоглобину, может связывать кислород.

В зависимости от толщины волокон и содержания в них миоглобина различают:

Красные волокна:

Богаты саркоплазмой, миоглобином и митохондриями

Однако они самые тонкие

Миофибриллы в них расположены группами

Окислительные процессы более интенсивны

Промежуточные волокна:

Беднее миоглобином и митохондриями

Более толстые

Окислительные процессы менее интенсивны

Белые волокна:

- самые толстые

- количество миофибрилл в них больше и располагаются они равномерно

- окислительные процессы менее интенсивны

- еще ниже содержание гликогена

Структура и функция волокон неразрывно связана между собой. Так белые волокна сокращаются быстрее, но и быстро утомляются. (спринтеры)

Красные способы к более длительному сокращению. У человека мышцы содержат все типы волокон, в зависимости от функции мышцы в ней преобладают тот или иной тип волокон. (стайеры)

Строение мышечной ткани

Волокна отличаются поперечной исчерченностью: темные анизотропные диски (А-диски) чередуются со светлыми изотропными дисками (I-диски). Диск А разделен светлой зоной H, в центре которой проходит мезофрагма (линия М), диск I разделен темной линией (телофрагма – Z линия). Телофрагма толще в миофибриллах красных волокон.

Миофибриллы содержат сократительные элементы – миофиламенты, среди которых веделяют толстые (миозивные), занимающие А диск, и тонкие (актиновые), лежащие в I-диске и прикрепляющиеся к телофрагмам (Z-пластинки содержат белок альфа-актин), причем концы их проникают в А-диск между толстыми миофиламентами. Участок мышечного волокна расположенный между двумя телофрагмами, представляет собой сарконнер – сократительную единицу миофибрилл. Благодаря тому, что границы саркомеров всех миофибрилл совпадают, возникает регулярная исчерченность, которая хорошо видна на продольных срезах мышечного волокна.

На поперечных срезах отчетливо видны миофибриллы в виде округлых точек на фоне светлой цитоплазмы.

Согласно теории Huxley, Hanson, мышечное сокращение – результат скольжения тонких (актиновых) филаментов относительно толстых (миозиновых). При этом длина филаментов диска А не изменяется, диск I уменьшается в размерах и исчезает.

Мышцы как орган

Строение мышц. Мышца как орган состоит из пучков поперечнополосатых мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка и т.д. в целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой, составляя мышечное брюшко.

Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.

Так как сокращение мышцы вызывается импульсом, идущим от ЦНС, то каждая мышцы связана с ней нервами: афферентным, являющимся проводником «мышечного чувства» (двигательный анализатор, по К.П. Павлову), и эфферентным, приводящим к ней нервное возбуждение. Кроме того, к мышце подходят симпатические нервы, благодаря которым мышцы в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом.

В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы.

В мышечные ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).

В мышце различают активно сокращающуюся часть – брюшко и пассивную часть – сухожилие.

Таким образом, скелетная мышцы состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани, из нервной ткани, из эндотелия мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой – сократимость, она определяет функцию мускула как органа – сокращение.

Классификация мышц

Мышц насчитывается до 400 (в человеческом организме).

По форме делятся на длинные, короткие и широкие. Длинные соответствуют рычагам движения, к которым они прикрепляются.

Некоторые длинные начинаются несколькими головками (многоглавые) на различных костях, что усиливает их опору. Встречаются мышцы двуглавые, трехглавые и четырехглавые.

В случае слияния мышц разного происхождения или развившихся из нескольких миотонов между ними остаются промежуточные сухожилия, сухожильные перемычки. Такие мышцы имеют два брюшка или больше – многобрюшные.

Варьирует также число их сухожилий, которыми заканчиваются мышцы. Так, сгибатели и разгибатели пальцев рук и ног имеют по несколько сухожилий, благодаря чему сокращения одного мышечного брюшка дает двигательные эффект сразу на несколько пальцев, чем достигается экономия в работе мышц.

Широкие мышцы – располагаются преимущественно на туловище и имеют расширенное сухожилие, называемое сухожильным растяжением или апоневрозом.

Встречаются различные формы мышц: квадратная, треугольная, пирамидальная, круглая, дельтовидная, зубчатая, камбаловидная и др.

По направлению волокон, обусловленному функционально, различаются мышцы с прямыми параллельными волокнами, с косыми волокнами, с поперечными, с круговыми. Последние образуют жомы, или сфинктеры, окружающие отверстия.

Если косые волокна присоединяются к сухожилию с одной стороны, то получается так называемая одноперистая мышцы, а если с двух сторон, то двуперистая. Особое отношение волокон к сухожилию наблюдается в полусухожильной и полуперепончатой мышцах.

Сгибатели

Разгибатели

Приводящие

Отводящие

Вращатели кнутри (пронаторы), кнаружи (супинаторы)

Онто-филогенетические аспекты развития опорно-двигательного аппарата

Элементы опорнодвигательного аппарата туловища у всех позвоночных развиваются из первичных сегментов (сомитов) дорсальной мезодермы, залегающих по бокам и нервной трубки.

Возникающая из медиовентральной части сомита мезенхима (склеротом) идет на образование вокруг хорды скелета, а средняя часть первичного сегмента (миотом) дает мышцы (из дорсолатеральной части сомита образуется дерматом).

При образовании хрящевого, а впоследтсвии костного скелета мышцы (миотомы) получают опору на твердых частях скелета, которые в силу этого располагаются также метамерно, чередуясь с мышечными сегментами.

Миобласты вытягиваются,сливаются друг с другом и превращаются в сегменты мышечных волокон.

Первоначально миотомы на каждой стороне отделяются друг от друга поперечными соединительнотканными перегородками. Также сегментированное расположение мускулатуры туловища у низших животных остается на всю жизнь. У высших же позвоночных и у человека благодаря более значительной дифференцировке мышечных масс сегментация значительно сглаживается, хотя следы ее и остаются как в дорсальной, так и в вентральной мускулатуре.

Миотомы разрастаются в вентральном направлении и разделяются на дорсальную и вентральную часть. Из дорсальной части миотомов возникает спинная мускулатура, из вентральной – мускулатура, расположенная на передней и боковой сторонах туловища и называемая вентральной.

Соседние миотомы могут срастаться между собой, но каждый из сросшихся миотомов удерживает относящийся к нему нерв. Поэтому мышцы, происходящие из нескольких миотомов иннервируются несколькими нервами.

Виды мышц в зависимости от развития

На основании иннервации всегда можно отличить аутохтонную мускулатуру от сместившихся в эту область других мышц – пришельцев.

    Часть мышц, развившихся на туловище, остается на месте, образуя местную (аутохтонную) мускулатуру (межреберные и короткие мышцы м/у отростками позвонков.

    Другая часть в процессе развития перемещается с туловища на конечности – трункофугальные.

    Третья часть мышц, возникнув на конечностях, перемещается на туловище. Это трункопетальные мышцы.

Развитие мышц конечностей

Мускулатура конечностей образуется из мезенхимы почек конечностей и получает свои нервы от передних ветвей спинномозговых нервов при посредстве плечевого и пояснично-крестцового сплетений. У низших рыб из миотов туловища вырастают мышечные почки, которые разделяются на два слоя, расположенные с дорсальной и вентральной сторон скелета.

Подобным же образом у наземных позвоночных мышцы по отношению к зачатку скелета конечности первоначально располагаются дорсально и вентрально (разгибатели и сгибатели).

Трунктопетальные

При дальнейшей дифференцировке зачатки мышц передней конечности разрастаются и проксимальном направлении и покрывают аутохтонную мускулатуру туловища со стороны груди и спины.

Кроме этой первичной мускулатуры верхней конечности, к поясу верхней конечности присоединяются еще трункофугальные мышцы, т.е. производные вентральной мускулатуры, служащшие для передвижения и фиксации пояса и переместившиеся на него с головы.

У пояса задней (нижней) конечности вторичных мышц не развивается, так как он неподвижно связан с позвоночным столбом.

Мышцы головы

Возникают отчасти из головных сомитов, а главным образом из мезодермы жаберных дуг.

Третья ветвь тройничного нерва (V)

Промежуточно-лицевой нерв (VII)

Языкоглоточный нерв (IX)

Верхняя гортанная ветвь блуждающего нерва (Х)

Пятая жаберная дуга

Нижняя гортанная ветвь блуждающего нерва (Х)

Работа мышц (элементы биомеханики)

Каждая мышца имеет подвижную точку и неподвижную точку. Сила мышцы зависит от количества входящих в ее состав мышечных волокон и определяется площадью разреза в том месте, через которое проходят все волокна мышцы.

Анатомический поперечник – площадь поперечного сечения, перпендикулярного длиннику мышцы и проходящего через брюшко в наиболее широкой его части. Этот показатель характеризует величину мышцы, ее толщину (фактически определяет объем мышцы).

Абсолютная сила мышцы

Определяется отношением массы груза (кг), который мышца может поднять и площади ее физиологического поперечника (см2)

У икроножной мышцы – 15,9 кг/см2

У трехглавой – 16,8 кг/см2

Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект).

Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра.

Мышечное волокно , как и любая клетка, окружено оболочкой - сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна.

Группы мышечных волокон, образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани переходящей на концах мышцы в сухожилия, крепящиеся к кости (рис.1).

Рис. 1.

Усилие, вызываемое сокращением длины мышечного волокна, передается через сухожилия костям скелета и приводит их в движение.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления - аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну.

Рис. 2.

Таким образом, один мотонейрон иннервирует целую группу волокон (так называемая нейромоторная единица), которая работает как единое целое.

Мышца состоит из множества нервно моторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна, которое, как вы уже поняли, сильно отличается от обычной клетки. Начнем с того, что мышечное волокно многоядерно. Связано это с особенностями формирования волокна при развитии плода. Симпласты (мышечные волокна) образуются на этапе эмбрионального развития организма из клеток предшественников - миобластов.

Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл (сократительных структур клетки см. ниже), и завершается формирование волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остается только функция генерации информации для синтеза белка.

Но не все миобласты идут по пути слияния, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечной массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря клеткам-сателлитам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателиты активизируются, делятся и преобразуются в миобласты.

Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы.

Помимо многоядерности отличительной чертой мышечного волокна является наличие в цитоплазме (в мышечном волокне ее принято называть саркоплазмой) тонких волоконец – миофибрилл (рис.1), расположенных вдоль клетки и уложенных параллельно друг другу. Число миофибрилл в волокне достигает двух тысяч.

Миофибриллы являются сократительными элементами клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся темные и светлые полосы.

При сокращении миофибриллы светлые участки уменьшают свою длину и при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли была разработана модель скользящих нитей, затем она нашла подтверждение в экспериментах и сейчас является общепринятой.

ЛИТЕРАТУРА

  1. МакРоберт С. Руки титана. – М.: СП " Уайдер спорт", 1999.
  2. Остапенко Л. Перетренированность. Причины возникновения перетренированности при силовом тренинге // Ironman, 2000, № 10-11.
  3. Солодков А. С., Сологуб Е. Б. Физиология спорта: Учебное пособие. – СПб: СПбГАФК им. П.Ф. Лесгафта, 1999.
  4. Физиология мышечной деятельности: Учебник для институтов физической культуры / Под ред. Коца Я. М. – М.: Физкультура и спорт, 1982.
  5. Физиология человека (Учебник для институтов физической культуры. Изд. 5-е). / Под ред. Н. В. Зимкина. – М.: Физкультура и спорт, 1975.
  6. Физиология человека: Учебник для студентов медицинских институтов / Под ред. Косицкого Г. И. - М.: Медицина, 1985.
  7. Физиологические основы спортивной тренировки: Методические указания по спортивной физиологии. – Л.: ГДОИФК им. П.Ф. Лесгафта, 1986.